

Magnetic Island Microgrid Feasibility Study Study Overview and Findings

Yurika Agenda

- 1. Who is Yurika?
- 2. Magnetic Island Current State
- 3. What is a microgrid?
- 4. Key objectives
- 5. Feasibility study approach
- 6. Key findings

Who we are

Established in 2016, we're part of Energy Queensland, Australia's largest government—owned electricity company.

Our capabilities

Solar

Electric vehicle charging

Wind farms

Battery Energy Storage

Electricity Networks

Telecommunication

Microgrids

Metering

Electrical Equipment Supply

Magnetic Island

Magnetic Island is brimming with solar PV energy.

2,500 population

1,950 residential sites

200 business sites

Energy Snapshot

5.3 MW of solar PV installed

656 sites (31%)

with solar PV installed

5.5 MW annual peak power (6-7pm, 2023/24)

5,494 tonnes CO2-e GHG emissions saved from existing solar PV

30 % energy needs supplied by renewable energy

2023/24 reverse flow

first year solar PV energy flowed from Magnetic Island to Townsville

What is a microgrid?

Microgrid components:

- Does it supply multiple houses and/or business?
- Can it operate independent of the main electricity grid?

Microgrid key differentiating factors:

- Objectives
- Single or multiple land parcels
- High voltage or low voltage distribution
- Operating model
- Electricity distribution infrastructure owner
- Centralised asset owner/s
- Distributed asset owner/s

Key Objectives

Yurika worked with MICDA to understand the key drivers of the microgrid feasibility study.

MICDA's high level objectives:

MAXIMISE ECONOMIC BENEFIT/ VALUE

Study approach

Yurika conducted the feasibility study considering many solutions to achieve MICDA's objectives

Feasibility

- **▼** Technical
- **Y** Financial
- **Environmental**
- ✓ Operational

Villages

Specific locations within villages?

Technology

High Voltage or Low Voltage?

Ownership

Distributed

Residents

Businesses

Centralised

Community entity

Energy Qld entity

Townsville City Council

Other?

Method:

High level solution concepts microgrid & non-microgrid

Actionable concepts for detailed analysis

Feasible solution that clearly achieves MICDA's key objectives

Feasibility study overview

The typical network arrangement...

Feasibility study overview

Solution concepts (microgrid) considered...

High voltage (HV) community microgrid – grid outage

Low voltage (LV) community microgrid – grid outage

Network-owned (battery) microgrid solutions are developing in QLD...

Ergon Energy Network's first battery-based microgrid pilot projects (2)

Why?

The 2 x First Nations communities in FNQ are on the edge of the network experience frequent power outages

	Mossman Gorge	Jumbun				
Network level	High voltage	Low voltage				
Key Objective	Reduce power outages					
Electricity Bill	No change					
Supply Scale	180 people	100 people				

Considerations for Magnetic Island

- Ergon Network will not have a solution to deploy in other communities until at least 2029
- If Ergon Network deploy more, locations with higher-than-average power outages will be prioritised
- Ergon Network have advised they have a satisfactory electricity network on Magnetic Island for at least the next 5 years
- Recent Magnetic Island Ergon Network upgrade projects will help reduce power outages

Magnetic Island network upgrade | Ergon Energy

Privately-owned microgrids can have significant economic & regulatory barriers...

High voltage community microgrid

The microgrid owner is required to:

- Be a distribution business if microgrid supplies beyond your land and if electricity supply is the main business.
- Buy high voltage network from Ergon Energy Network (if willing to sell).
- Only operate network, not sell energy.
 A separate retailer would be needed.

Low voltage community microgrid

The microgrid owner is required to:

- Buy low voltage network from Ergon Energy Network (if willing to sell) or construct new network.
- Get permission from Ergon Energy
 Network, Townsville City Council and
 impacted homes and businesses.
- Get the appropriate registration or exemptions to operate network that supplies others and sell energy.

Meet Objectives?

Yes, by Solar Soaking Adding a centralised battery will increase local use of solar energy.

No
No clear profit to offer
discounted electricity
to homes and
businesses.

microgrid.

Sometimes
Will provide backup
power, unless a fault/
planned work causes an
outage within the

Feasibility study overview

Solution concepts (non-microgrid) considered...

Privately-owned centralised battery storage is a step towards a microgrid...

Centralised Battery Solution

Solution: 1 MW / 2 MWh Battery

Capital cost: \$3.2 million

Limitation: no backup power

Battery use: Retailer to monetise

battery power

Annual Revenue: \$145k +

Sites Investigated:

Horseshoe Bay Park

Picnic Bay Landfill

Key Barriers:

- Limited and/or uncertain revenue
- 2. Capital cost of new network connection
- Ongoing network connection fees and operational limits
- Finding a suitable site to locate the battery & associated costs
- 5. Insurance challenges

Meet Objectives?

Yes, by Solar Soaking Adding a centralised battery will increase local use of solar energy.

Not directly

No clear business case to share benefit of with community

No

Does not operate during a grid outage.

Individual solar and battery is the most beneficial solution

Rooftop Solar & Battery (with backup capability)

Individual home/business batteries – grid outage

Advantages:

- Federal Government 'Cheaper Home Batteries Program'
- Can provide backup power to total load if sized and configured correctly
- Full ownership and control of solution and benefit
- Time-of-use tariffs (different cost at different times of day) and behaviour change can enable more savings

Disadvantages:

- Can be a high capital cost for an individual
- Some are locked out (e.g. renter, unsuitable roof etc.)
- Cannot share benefit or trade energy with neighbours
- Providing back up power to a large site is more costly and complex

Meet Objectives?

Yes
Additional solar
and/or a battery to
increase use of solar
locally.

Yes
Direct savings on electricity bill.

Yes, if configured
Residential or
commercial batteries
can provide backup to
part or all load.

Typical Arrangement – Residential

BEFORE

No solar

+ 6.6 kW solar + Battery

90% of load supplied by renewable

6.6 kW solar

+ 10 kWh battery

4.5 kW solar

+ 2.1 kW solar + Battery

6.6 kW solar

+ 10 kWh battery

AM

Load

(kW)

6.6 kW solar

+ Battery only

6.6 kW solar

+ 10 kWh battery

RESULTS (10 YRS)

\$9,200 capital cost **\$2,150** (86%) Year 1 bill savings 4.6-year payback

Time-of-use Demand RETAIL Tariff 14C

\$9,200 capital cost **\$2,320** (93%) Year 1 bill savings 4.2-year payback

\$6,970 capital cost **\$960** (71%) Year 1 bill savings 8.3-year payback

\$6.970 capital cost **\$1,120** (83%) Year 1 bill savings 6.8-year payback

\$5,950 capital cost **\$590** (56%) Year 1 bill savings no payback

17.6 kWh/day

\$5,950 capital cost **\$780** (73%) Year 1 bill savings 8.7-year payback

Typical Arrangement – Small Business

BEFORE

No solar

+ 30 kW solar + Battery

AFTER

55% of load supplied by renewable

30 kW solar

+ 30 kWh battery

Load (kW) 140 kWh/day 140 kWh/day 140 kWh/day Time of Day

10 kW solar

+ 20 kW solar + Battery

30 kW solar

+ 30 kWh battery

RESULTS (10 YRS)

\$32,760 capital cost \$11,590 (68%) Year 1 bill savings 3.0-year payback

\$32,760 capital cost \$12,710 (74%) Year 1 bill savings 2.8-year payback \$27,870 capital cost \$6,825 (55%) Year 1 bill savings 4.3-year payback

\$27,870 capital cost \$7,890 (64%) Year 1 bill savings 3.8-year payback

Individual solar and batteries can have a varying payback

Example Scenario:

Residential

No solar

6.6 kW solar

+ 10 kWh battery

Capital Cost (\$) (excl. GST)

\$ 17,60	10.8	10.5	8.9	8.5	8.2	7.9	7.7
\$ 16,40	00 10.0	9.8	8.3	7.9	7.6	7.3	7.1
\$ 15,20	9.2	9.0	7.6	7.3	7.0	6.8	6.5
\$ 14,00	0 8.4	8.2	7.0	6.7	6.4	6.2	6.0
\$ 12,80	0 7.6	7.5	6.3	6.1	5.8	5.6	5.5
\$ 11,60	0 6.9	6.7	5.7	5.5	5.3	5.1	4.9
\$ 10,40	0 6.1	6.0	5.1	4.9	4.7	4.5	4.4
\$ 9,20	o 5.4	5.2	4.5	4.3	4.1	4.0	3.9
\$ 8,00	0 4.6	4.5	3.9	3.7	3.6	3.4	3.3
\$ 6,80	0 3.9	3.8	3.3	3.1	3.0	2.9	2.8
Per year	→ 4,200	5,300	6,400	7,500	8,600	9,700	10,800
Per day	→ 11.5	14.5	17.5	20.5	23.6	26.6	29.6

Simple Payback Scenarios

Electricity Consumption (kWh)

Annual Savings → \$ 1,800 \$ 1,850 \$ 2,150 \$ 2,240 \$ 2,320 \$ 2,400 \$ 2,480 (Tariff 11)

Concept comparison summary & conclusion

Key Objectives

MAXIMISE ECONOMIC BENEFIT/ VALUE

Microgrid

Yes, by Solar Soaking Adding a centralised battery will increase local use of solar energy.

No

No clear profit to offer discounted electricity to homes and businesses.

Sometimes

Will provide backup power, unless a fault/ planned work causes an outage within the microgrid.

Centralised Battery

Yes, by Solar Soaking Adding a centralised battery will increase local use of solar energy.

Not directly

No clear profit to share benefit of with community

No

Does not operate during a grid outage.

Yes

Additional solar and/or a battery to increase use of solar locally.

Yes

Direct savings on electricity bill.

Yes, if configured

Residential or commercial batteries can provide backup to part or all load.

Thank You

1300 624 122

hello@yurika.com.au

Australia Wide Yurika Pty Ltd 19 100 214 131 | Part of Energy Queensland

yurika

yurika.com.au